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Abstract 

A low-density parity-check (LDPC) code is a linear error correcting code, and is used for transmitting message 

over a noisy transmission channel. A new class of error correcting codes called EG-LDPC (Euclidean 

Geometry-LDPC) codes and its encoder and decoder architectures for nanomemory applications is designed. 

EG-LDPC codes also have fault secure detection capability. One step majority logic decoding technique is used 

to detect errors in the memory. The method detects whether a word has errors in the first iterations, and when 

there are no errors the decoding ends without completing the rest of the iterations. This greatly reduces the 

average decoding time. 

Index terms- Error correction codes (ECC), EG-LDPC codes, Majority logic decoding, Memory.  

 

I. INTRODUCTION     
     LDPC codes and Turbo codes are among the 

known near Shannon limit codes that can achieve 

very low bit error rates for low SNR applications. 

When compared to the decoding algorithm of Turbo 

codes, LDPC decoding algorithm has more 

parallelization, low implementation complexity, low 

decoding latency, as well as no error-floors at high 

SNRs. For decoding of turbo codes LUT-Log BCJR 

algorithm is used and the decoding architecture 

contains 2
m
 ACS units which are placed in parallel, 

where m refers to the number of memory elements. 

And also the turbo decoder architecture contains  

memory units and also a number of registers [3]. The 

turbo decoder architecture has increased hardware 

complexity and power consumption. Also, in the last 

few years, the advances of low-density parity-check 

codes have seen them surpass turbo codes in terms of 

error floor and performance in the higher code rate 

range, leaving leaving turbo codes better suited for 

the lower code rates only. LDPC codes are 

considered for all the next generation communication 

standards. 

Error correction codes are used to protect 

memories from soft errors, which change the logical 

value of memory cells without damaging the circuit. 

Due to the increase in soft error rate in logic circuits, 

the encoder and decoder circuitry around the memory 

blocks have become susceptible to soft errors and it 

should also be protected. Hence we design a new 

encoder and decoder circuit for memory designs. As 

technology improves, memory devices become larger 

and more powerful error correction codes are needed. 

The codes such as turbo codes and other error 

 

correcting codes can correct a large number of errors, 

but it generally requires larger complex decoders. 

This results in increased power consumption. To 

avoid a high decoding complexity, one step majority 

logic decodable codes are used for memory 

applications. Euclidean Geometry Low Density 

Parity Check (EG-LDPC) codes are one step majority 

logic decodable. The idea behind the method the 

method is that, the first iterations of the majority 

logic decoding is to detect if the word being decoded 

contains errors. If there are no errors, the decoding 

can be stopped without completing the rest of the 

iterations. Thus the decoding time is reduced. 

Majority logic decoding is used to detect and correct 

in memory applications. 

Section I gives the introduction and 

Euclidean geometry codes are explained in section II. 

The design structure of the EG-LDPC codes are 

explained in section III. And then the results and 

conclusion are given in IV and V.   

  

II. EUCLIDEAN GEOMETRY CODES 
Euclidean geometry codes are low density 

parity check codes and it is hence called EG-LDPC 

codes. These codes are built using special structures 

of finite Euclidean Geometry. LDPC codes have 

limited number of 1‟s in the rows and columns of the 

matrix, and hence the complexity of the detectors and 

correctors is reduced. Euclidean Geometry is a finite 

geometry with n points and J lines. The properties of 

Euclidean Geometry [2] are given as follows: 

1)every line consists of ρ points                                         

2)any two points connected by exactly one line 

3)every point is intersected by γ lines 
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4)two lines intersect exactly in one point or they                   

are parallel 

H is a Jxn parity check matrix, whose rows 

and columns corresponds to lines and points in an 

Euclidean Geometry. Every column of H matrix 

represents a point in the space, every row represents a 

line and every entry of 1 in the matrix represents that 

the corresponding row line is incident on the column 

point.  The row weight ρ should be equal to the 

column weight γ.  hij = 1 iff i
th

 line of EG contains j
th

 

point of EG, and zero otherwise. H is an LDPC 

matrix and therefore the code is an LDPC code. Also, 

EG-LDPC codes are cyclic codes. 

      

III. DESIGN STRUCTURE 
All the existing designs of encoders and 

decoders use the conventional fault tolerant scheme 

to protect the encoder end decoder circuitry. The fault 

tolerant scheme includes logic replication or 

concurrent parity prediction. These schemes add 

additional logic to check the correctness of the circuit 

calculation. The overall architecture of ECC 

nanomemory is given in [4]. 

 

A)Encoder: 

Let i be the k-bit information vector and G 

be the kxn generator matrix, then the received n-bit 

codeword c is given by, 

                    c = i x G                       

the generator matrix is given by, G = [I:X]  where i is 

the k x k identity matrix and X be the k x (n-k) matrix 

that generates the parity bits. (n,k,d) represent an 

error correction code with code length n, information 

bit length k and minimum distance d. Minimum 

distance d refers to the minimum number of codebits 

that are different between any two codewords. The 

structure of the encoder circuit for (15,7,5) EG-LDPC 

code is given below as obtained from [2] in fig.1. i0 

to i6 represents the 7-bit information vector. Each 

XOR gates generate one parity bit of the encoded 

vector. The encoder structure contains (n-k) XOR 

gates.  

 

B)Detector: 

Validity of received encoded vector is 

checked with the parity check matrix. The operation 

of the detector is to generate the syndrome vector. 

The checking or detecting operation is given by,  

                        s = c x H
T 

the syndrome vector s is an (n-k) bit vector. Each bit 

of the syndrome vector is the product of c with one 

row of H. If the syndrome s is „0‟ the c is a valid 

codeword and if not equal to „0‟ the c is erroneous. 

The binary sum of this product is implemented with 

an XOR gate. Since row weight of H is ρ, to generate 

1 digit of the syndrome vector, we need a ρ input 

XOR gate or (ρ-1) two input XOR gate. The whole 

detector takes n(ρ-1) two input XOR gates. An error 

is detected if any syndrome bits has a non-zero value. 

OR function of all syndrome bits are used to detect 

errors. (n-input XOR gate used). The detector for an 

(15,7,5) EG-LDPC code is given in fig. 2 as obtained 

from [2]. 

 

C)Memory: 

In memory units with ECC scrubbing logic 

is used to maintain integrity. To avoid accumulation 

of too many errors in memory, scrubbing is 

performed. Scrubbing refers to the process of  

periodically reading memory words from the 

memory, correct the potential errors and write them 

back into the memory. While performing the 

operation of memory scrubbing, 

 

 
                               Fig.1. structure of an encoder circuit for the (15,7,5) EG-LDPC code 
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Fig.2.  Structure of an detector circuit for the (15,7,5) 

EG-LDPC code. 

 

normal memory access operation is stopped. 

D)One step majority logic decoding: 

One step majority logic correction is a fast 

and relatively compact error correcting technique. 

Type 1 2D EG-LDPC codes are one step majority 

logic decodable. Type 1 EG-LDPC codes are 

systematic. One step majority logic corrector is used 

to identify the correct value of each bit in the 

codeword directly from the received codeword. 

Decoding of EG-LDPC codes have low 

computational overhead and is sparseness. Hence it 

can be easily implemented using nanoscale hardware 

[4]. The conventional technique includes message 

passing error correction strategy. This technique 

demands multiple iterations or error diagnosis and 

trial correction. 

The one step majority logic corrector when 

implemented serially provides compact 

implementation and when implemented in parallel 

minimize correction latency. The advantage of this 

method is that it requires very little additional 

circuitry as the decoding circuitry is also used for 

error detection. This method contains two main parts. 

1) generating a specific set of linear sums of the 

received vector bits. 

2) finding majority value of the computed linear 

sums. 

A linear sum of the received encoded vector 

bits can be formed by computing the inner product of 

the received vector and a row of a parity-check 

matrix. This sum is called Parity-Check sum. The 

core of the one-step majority-logic corrector is 

generating γ parity-check sums from the appropriate 

rows of the parity-check matrix. The one-step 

majority logic error correction is summarized in the 

following procedure. These steps correct a potential 

error in one code bit lets say, cn-1 

 

1) Generate γ parity-check sums by computing the 

inner product of the received vector and the 

appropriate rows of parity-check matrix. 

2) The γ check sums are fed into a majority gate. The 

output of the majority gate corrects the bit cn-1 by 

inverting the value cn-1 of if the output of majority 

gate is “1”. 

The circuit implementing a serial one-step 

majority logic corrector for a (15,7,5) EG-LDPC 

code is shown in Fig. 3. This circuit generates γ 

parity-check sums with γ XOR gates and then 

computes the majority value of the parity-check 

sums. Since each parity-check sum is computed using 

a row of the parity check matrix and the row density 

of EG-LDPC codes are ρ , each XOR gate that 

computes the linear sum has ρ inputs. 

 
    

If errors can be detected in the first few 

iterations of majority logic decoding  , then whenever 

no errors are detected in those iterations, the 

decoding can be stopped without completing the rest 

of the iterations. In the first iteration, errors will be 

detected when at least one of the check equations is 

affected by an odd number of bits in error.  

In the second iteration,as bits are cyclically 

shifted by one position, errors will affect other 

equations such that some errors undetected in the first 

iteration will be detected. As iterations advance, all 

detectable errors will eventually be detected. 

 

                       IV. RESULTS 

Fig.3. serial one-step majority logic decoder for the 

(15,7,5) EG-LDPC code 

The parameters of the EG-LDPC codes are 

given such as: N is the block size, K the number of 

information bits, J the number of majority logic 

decoding check equations and tML the number of 

errors that the code can correct using one step 

majority logic decoding. In fig.3. the block size N = 

15. First the entire data block is loaded into the 

registers. Then the check equations are computed and 

the majority value is calculated. The majority value 

indicates the correctness of the code-bit under 

consideration. If majority value is 1, the bit cn-1 is 

inverted, otherwise it is kept unchanged.  Once the 

code bit cn-1 is corrected the codeword is cyclic 

shifted and code bit cn-2 is placed at position cn-1 and 

will be corrected. Thus all the bits are cyclically 
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shifted. This set of operations constitute a single 

iteration: the bits are in the same position after N 

iterations, in which they are loaded. Thus, each bit 

may be corrected only once. The properties of check 

equations are given as follows: 

1)All check equations include the variable whose 

value is stored in the last register(i.e c14) 

2)The rest of the registers are included in at most one 

of the check equations. 

The simulation results of encoder, decoder, 

detector and memory is given below 

 
               Fig.4. simulation of encoder 

 

 
                Fig.5. simulation of memory 

 

 
              Fig.6. simulation of decoder 

 

 
            Fig.7. simulation of detector 

An hypothesis was given in [1] and is given as “given 

a word read from memory protected with one step 

majority logic decoding EG-LDPC codes, and 

affected by up to four bit-flips, all errors can be 

detected in only three decoding cycles. Also the 

majority logic circuitry is simpler for EG-LDPC 

codes, as the number of equations is a power of two. 

The majority gate has an application in other error 

correcting codes, and this compact implementation 

can improve many other applications. A majority 

function of γ binary digits is simply the median of the 

digits (where we define the median of an even 

number of digits as the 
𝛾

2
 + 1

st
 smallest digit. The 

majority logic decoding technique was implemented 

in VHDL and synthesized, and the results show that 

for codes with large block sizes the overhead is low. 

The comparison between LDPC and Turbo codes is 

given in terms of area, power and delay in the table. 

1. Thus decoding of LDPC codes are less complex 

than turbo codes. And it also reduces the hardware 

complexity and power consumption. 

 

 

 

Table. 1. Comparison of LDPC and Turbo codes 

 

IV. CONCLUSION 
Thus the decoder architecture for LDPC 

codes are designed. And the simulation results for 

encoder, decoder, memory and detector are obtained. 

And also the majority logic decoder is implemented 

serially. And the future work is to implement the 

majority logic decoder in parallel. 
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